
FUN3D v14.0 Training

Stabilized Finite Elements

W. Kyle Anderson1,

Stephen L. Wood1,

Kevin E. Jacobson2,

Emmett Padway2

1: Computational AeroSciences Branch

2: Aeroelasticity Branch

NASA Langley Research Center
Public Community Questions: fun3d-users@lists.nasa.gov

Private/Proprietary Questions: fun3d-support@lists.nasa.gov

Spring, 2023

mailto:fun3d-users@lists.nasa.gov
mailto:fun3d-support@lists.nasa.gov

Overview

2

• Why add a Stabilized Finite-Element (SFE) Solver?

• Training scope

• Compilation optimization flags for SFE

• Shared components for SFE and Finite-Volume (FV) in FUN3D

• Steady analysis with SFE

• Supported modes

• Nonlinear iteration

• Input files

• Output files

• Trouble shooting

• Tutorial cases

• BSCW

• ONERA M6 with goal-oriented adaptation

Why add a Stabilized Finite-Element Solver?

3

• Smaller stencil for linearizations needed for adjoints and strong solvers

• Improved accuracy on tetrahedral meshes

• A path to higher order CFD

• Everything available in FUN3D version 14.0 is 2nd order (P1 linear elements)

• Lower dissipation compared to the FV solver

Training Scope

4

• What this training will cover:

• Compiling FUN3D with the SFE

• How SFE is different than the standard FV solver

• Case set up for SFE steady-state analysis

• What will not be covered:

• Static aeroelastic analysis with SFE

• Linearized Frequency Domain (LFD) analysis with SFE

• What you should already be familiar with:

• Basic steady analysis with the FUN3D FV solver

Recommended Configure Options

5

../configure --enable-maxinlining=yes [other options]

Max inlining reduces execution time at the expense of compilation time by allowing additional optimizations across functions

Exemplar Intel compiler flags

FCFLAGS="-O3 -qopenmp -xCORE-AVX512”

CXXFLAGS="-O3 -qopenmp -xCORE-AVX512 -DL1P=1 -DL2P=1”

Optional if you want to do hybrid MPI+OpenMP

• Hybrid mode can be beneficial for the preconditioner in SFE

SFE makes effective use of vectorization

• These are exemplar Skylake optimization flags to enable vectorization

Shared components for SFE and FV in FUN3D

6

• FUN3D uses much of the same code to drive SFE as the FV solver

• Same nodet_mpi executable and *most* of the non-flow solver portions of FUN3D are

compatible with SFE

• Mesh partitioning

• Mesh motion

• SFE does not currently support overset simulations

• Solution sampling

• SFE solution is stored at the nodes like the FV solver

• Derived quantities -- e.g., vort_mag -- are post processed using least-squares reconstruction (same as

FV)

Steady analysis with SFE

7

Supported modes:

• CPU

• Compressible flow (perfect gas)

• Inviscid, Laminar, RANS (SA negative)

• Mixed-element grids

• 2D or 3D mode

Input files:

• fun3d.nml – options not specific to SFE

» Mesh information, flow conditions, sampling options, number of steps, …

• sfe.cfg – options that only affect SFE

» Shock smoothers, nonlinear controller parameters, …

» The syntax is namelist like but is C++, so indexing starts at 0 for array inputs

• sfe_restart.cfg – automatically generated inputs for smooth restarting of SFE

» Overrides sfe.cfg if this file is read

SFE steady convergence

8

• The Newton-based nonlinear solver in SFE will show behavior closer to HANIM than the point

implicit solver typically used for the FV solver

• Each iteration is slower, but fewer iteration are required

• SFE typically converges in less than 300 steps rather than 10,000s

The SFE nonlinear iteration

9

Compute residual, R

Compute Jacobian, ∂R
∂Q

Linear solve: ∂R
∂Q∆Q0 = −R

Line search for update, ω∆Q0

PRMS

∆Q
∆Q0

ω 1

ω< ωmin allowed?
Yes

Reject step and cfl *= cfl divisor

No

Accept step and cfl *= cfl multiplier

Accept step and cfl *= cfl pause factor

ω= 1 and

reduction target met?

Yes

No

Eval. residual

Min. of fit through eval. pts.

The actual controller decision conditions

are more complicated to account for

things like realizability constraints

Most of the compute

time is spent here

L2 norm of residual

fun3d.nml inputs for SFE

10

• To use SFE, you must set the flow_solver in the fun3d.nml:

&governing_equations

flow_solver = 'sfe'

/

• Options for the FV discretization or algorithm settings do not affect SFE, e.g.

&inviscid_flux_method, &linear_solver_parameters, ...

• Typical options used in SFE runs:

• &project, &raw_grid, sampling namelists

• &code_run_control – steps, restart_read

• &governing_equations – viscous_terms

• &reference_physical_properties - mach_number, reynolds_number, temperature,

angle_of_attack

sfe.cfg :: nonlinear controller parameters

11

• cfl_init = 1.0 – initial CFL number

• cfl_min = 0.1 – minimum allowed CFL number

• cfl_max = 1.0e6 – maximum allowed CFL number

• cfl_divisor = 0.1

• cfl_multiplier = 1.25

• cfl_pause_factor = 0.8

• More aggressive options for easier cases:

– cfl_divisor = 0.1

– cfl_multiplier = 2.0

– cfl_pause_factor = 1.0

Compute residual, R

Compute Jacobian, ∂R
∂Q

Linear solve: ∂R
∂Q∆Q0 = −R

Line search for update, ω∆Q0

PRMS

∆Q
∆Q0

ω 1

ω< ωmin allowed?
Yes

Reject step and cfl *= cfl divisor

No

Accept step and cfl *= cfl multiplier

Accept step and cfl *= cfl pause factor

ω= 1 and

reduction target met?

Yes

No

Eval. residual

Min. of fit through eval. pts.

sfe.cfg :: smoothers 1 of 4

12

Smoothers locally add dissipation by augmenting the local viscosity to capture shocks, expansions, etc.

• Set smoothing=.true. for cases where the flow may go supersonic

• SFE has several smoother options that have different sensors used to detect where to add dissipation

Multiple smoothers can be turned on in the same simulation

• Set number_of_smoothers = 2

• Use the indices of smoother_type, smoother_clip, etc. to control the individual smoothers.

Reminder: array inputs start at 0 in sfe.cfg.

Controlling the smoothers:

• smoother_clip(i) = 2.0 – threshold used for the ith smoother to selectively apply smoother in the

field

– lower values -> increased area of application and higher magnitude (local effect)

• smoother_coef(i) = 1.0 – ith smoother’s scaling coefficient (global effect)

– higher values -> more smoothing applied

sfe.cfg :: smoothers 2 of 4

13

smoother_type(i) = metric_pressure

the default smoother which applies smoothing

at shocks and expansions

• smoother_clip(i) = 2.0

Typically use between 1.0 – 4.0,

but we have used as low as 0.5

• smoother_coef(i) = 1.0

Typically leave at 1.0

sfe.cfg :: smoothers 3 of 4

14

smoother_type(i) = ramped – Spatially uniform smoothing for domain that ramps away

as CFL* (the maximum CFL) increases.

• Starting ramping down at CFL=50. Completely off at CFL=500

• Useful for helping cases that have difficulty starting

• smoother_coef(i) = 1.0 – Sometimes need to increase to 10 for tough cases

sfe.cfg :: smoothers 4 of 4

15

Recommendations for smoothers:

• If running low subsonic, you can leave on the default, smoothing = .false.

• For anything above low subsonic, smoothing = .true.

• Defaults to one active smoother with smoother_type(0) = metric_pressure

• For high-speed cases that have a hard time starting, add a second smoother with ramped

dissipation (the metric_pressure will be the 0th smoother) :

smoothing = .true.

number_of_smoothers = 2

smoother_type(1) = ramped

smoother_coef(1) = 1.0 ! If it still struggles to start, try 10.0

sfe.cfg :: linear solver parameters 1 of 3

16

max_matvec = 600 – total number of linear search directions

krylov_dimension = 300 – number of orthogonal search directions

• each new Krylov vector takes more time and more memory to store

level_of_fill = 2 – size of the fill in for the Incomplete LU preconditioner

• More fill will typically yield a more accurate approximate inverse but requires more memory

Linear solver tolerances

relative_linear_residual_tolerance = 1e-8

absolute_linear_residual_tolerance = 1e-15

Note: the default parameters are recommended for steady simulations. For adjoint and LFD these

parameters often need to be adjusted.

sfe.cfg :: linear solver parameters 2 of 3

17

Reordering

• reorder = k-ordering – default node reordering algorithm

• reorder = cmk – Cuthill McKee algorithm

• reverse = .false. – Reverse the ordering algorithm

Q ordering

• Add localized randomization to the ordering as a second step applied after the initial reordering to

improve stability of linear solver. Recommended for difficult linear problems (transonic LFD).

• q_ordering = 0 – off (default), q_ordering = 1 – turn on q-ordering

• prune_width = 12.0 – factor that controls the number of rows involved in the local randomization

• Smaller prune_width can be more stable but slower due to larger final matrix bandwidth

prune_width = 1 prune_width = 4

sfe.cfg :: linear solver parameters 3 of 3

18

Dynamic reordering

• SFE can use a couple of indicators to dynamically adjust q-ordering if difficult linear problems are

encountered during a simulation

• dynamic_reordering = 2 – selects the indicator to trigger reordering

• 0 – off

• 1 – reorder before linear solve if growth trigger exceeded

• 2 – reorder if linear solve did not reach residual reduction target and the growth trigger is

exceeded

• dynamic_reordering_growth_trigger = 1.0e10 – the threshold of acceptable growth in

the L2 norm of the first Krylov vector due to the application of the preconditioner

• dynamic_reordering_prune_factor = 0.75 – multiplicative adjustment to the size of the

groups of rows and columns in the matrix that are reordered when

– typical values are 0.5 and 0.75

• dynamic_reordering_min_prune_width = 1.0e-6 – minimum allowed prune width

sfe.cfg :: other inputs 1 of 2

19

Residual smoothing – Locally add dissipation based on change in state during line search

• residual_smoothing = .true.

• Turn on/off residual smoothing

• residual_smoothing_coefficient = 10.0

residual_smoothing_secondary_coefficient = 50.0

• Amount of smoothing to apply. Larger values -> more dissipation (magnitude)

• residual_smoothing_switch_interval = 5

• Alternate between using the primary and secondary coefficient every {interval} steps

Round-off termination - trigger SFE termination when solution is not changing anymore but still
above specified stopping_tolerance

• round_off_termination = 1

• round_off_tolerance = 1e-12

• Stop SFE taking steps when
𝑅𝑀𝑆(∆𝑞)

𝑅𝑀𝑆(𝑞)
< round_off_tolerance

sfe.cfg :: other inputs 2 of 2

20

Weak boundary condition for viscous walls (4000)

• weak_bc = 2 – (default) penalty-based weak boundary condition

• Velocities at surfaces will be small, but not exactly zero at convergence

• weak_bc = 0 – strong enforcement of no slip condition

SA-QCR2000 Quadratic Constitutive Relation – not read from fun3d.nml

• qcr = .true.

SFE outputs

21

• Typical FUN3D steady outputs will be based on SFE’s calculations:

• {project}_hist.dat – residual history

• {project}.flow – restart state

• Standard (screen) output – minimal amount of output for monitoring a simulation

• {project}_sfe.out – detailed version of SFE monitoring output

• {project}_sfe_hist.dat – Tecplot file of SFE residuals, forces and moments, CFL number, etc.

• sfe_restart.cfg – inputs that can be used to restart a simulation

• {project}_flow.921, {project}_flow.cfl – details of nonlinear controller and line search

• Useful information to send to us for user support cases, but otherwise can ignore

SFE standard (screen) output for an iteration 1 of 2

22

Iter 9 CL = -3.192930242e-04 CD = 6.357647136e-01 CMy = -1.212308508e-02
maxMach = 7.4001062e-01 minTemp = 9.9986614e-01 minDens = 9.9877269e-01
res = 1.3462e-04 5.0573e-03 5.3034e-06 1.2820e-04 1.0171e-03 2.1076e-05
linear matvecs = 134 final res = 8.53029e-08 rate = 9.59122e-09
CFL = 8.00000e-01 line search step size = 0.98985

SFE standard (screen) output for an iteration 2 of 2

23

Iter 9 CL = -3.192930242e-04 CD = 6.357647136e-01 CMy = -1.212308508e-02
maxMach = 7.4001062e-01 minTemp = 9.9986614e-01 minDens = 9.9877269e-01
res = 1.3462e-04 5.0573e-03 5.3034e-06 1.2820e-04 1.0171e-03 2.1076e-05
linear matvecs = 134 final res = 8.53029e-08 rate = 9.59122e-09
CFL = 8.00000e-01 line search step size = 0.98985

• Current loads

• Extrema of state

• Current nonlinear residuals

• Linear solver convergence – iterations (matvecs), final linear problem residual and convergence rate

• Nonlinear solver - line search step size (𝜔) and updated CFL number

{project}_sfe.out – full iteration output 1 of 2

24

9 CFL_star = 1.0000000000e+00 scale_factor = 1.0000000000e+00
Wall clock time for residual = 7.9765624400e-01

9 rms = [2.2085858132e+02 1.5501516914e+03 5.9804670003e+03 2.1073767969e-03 1.1406551141e-01 1.1191056680e+01 1.1191056680e+01] cfl = 1.00000
2 max residual and location = 4.4363810401e-04 1.6933129977e+00 3.2853693322e+01 9.6951930984e-02 global id = 100988 slen = 8.8555181762e-05 rank = 0

Pressure forces from inviscid surface bc = 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
Pressure forces from viscous surface bc = 1.5194650723e+02 -1.1304305391e+00 1.2179625807e-01
Viscous forces from viscous surface bc = 1.7356502616e+02 2.6011552552e-01 -2.8527428644e-01
Total forces from viscous surface bc = 3.2551153339e+02 -8.7031501356e-01 -1.6347802837e-01
Total forces from all surfaces = 3.2551153339e+02 -8.7031501356e-01 -1.6347802837e-01
CL = -3.1929302417e-04 CD = 6.3576471365e-01 CLp = 2.3788331653e-04 CDp = 2.9677052193e-01 CLv = -5.5717634070e-04 CDv = 3.3899419172e-01
CMx = -2.2346581292e-03 CMxp = -1.7799280073e-03 CMxv = -4.5473012190e-04
CMy = -1.2123085084e-02 CMyp = -1.3899538465e-02 CMyv = 1.7764533812e-03
CMz = -1.0421167260e+01 CMzp = -4.7730402476e+00 CMzv = -5.6481270120e+00
currentIteration = 9 1.3461895268e-04 5.0573370660e-03 5.3034007850e-06 1.2820428491e-04 1.0171197936e-03 2.1075684098e-05
Wall clock time for left-hand side via operator overloaded operations using expression templates = 1.6265510181e+01

9 Number of zero or negative diagonals = 0 0 0 0 0 0
9 max preconditioner application growth = 6.0663693509e+00 rank = 44

Search direction 1 residual = 8.8938541522e+00 rate = 1.0000000000e+00
Search direction 10 residual = 6.2860759119e-01 rate = 7.0678873346e-02
Search direction 20 residual = 1.1561351602e-01 rate = 1.2999259269e-02
Search direction 30 residual = 2.4949710167e-02 rate = 2.8052753890e-03
Search direction 40 residual = 6.2341633675e-03 rate = 7.0095183267e-04
Search direction 50 residual = 1.7664334737e-03 rate = 1.9861282223e-04
Search direction 60 residual = 5.0761761823e-04 rate = 5.7075100349e-05
Search direction 70 residual = 1.5204205418e-04 rate = 1.7095181861e-05
Search direction 80 residual = 4.4990380781e-05 rate = 5.0585921481e-06
Search direction 90 residual = 1.3178913005e-05 rate = 1.4817999912e-06
Search direction 100 residual = 3.9102585218e-06 rate = 4.3965849393e-07
Search direction 110 residual = 1.1995190015e-06 rate = 1.3487055004e-07
Search direction 120 residual = 3.7157092235e-07 rate = 4.1778391684e-08
Search direction 130 residual = 1.3055244409e-07 rate = 1.4678950414e-08

9 Final Search direction 134 residual = 8.5302882352e-08 rate = 9.5912166911e-09 actual residual = 8.5302882394e-08 actual rate = 9.5912166911e-09
GMRES init wall clock time = 3.2581950000e-02
GMRES core wall clock time = 3.8629861690e+00
Preconditioner update wall clock time = 2.5410916340e+00
Preconditioner application wall clock time = 1.0419944091e+01
Matrix vector product wall clock time = 2.8636879170e+00
Wall clock time for linear solve = 2.0008637394e+01
relax_r = 9.8985000860e-01
relax_t = 1.0000000000e+00
Wall clock time for line search = 3.2880951660e+00
rms_dq = 1.2061860971e-02 rms_q = 6.6653365484e-01 rms_dq/rms_q = 1.8096402010e-02
Current iteration CFL omega relaxSave relaxFit = 9 8.00000e-01 9.89850e-01 9.89850e-01 9.89850e-01

{project}_sfe.out – full iteration output 2 of 2

25

Wall clock time for left-hand side via operator overloaded operations using expression templates = 1.6265510181e+01
9 Number of zero or negative diagonals = 0 0 0 0 0 0
9 max preconditioner application growth = 6.0663693509e+00 rank = 44

Search direction 1 residual = 8.8938541522e+00 rate = 1.0000000000e+00
Search direction 10 residual = 6.2860759119e-01 rate = 7.0678873346e-02
Search direction 20 residual = 1.1561351602e-01 rate = 1.2999259269e-02
Search direction 30 residual = 2.4949710167e-02 rate = 2.8052753890e-03
Search direction 40 residual = 6.2341633675e-03 rate = 7.0095183267e-04
Search direction 50 residual = 1.7664334737e-03 rate = 1.9861282223e-04
Search direction 60 residual = 5.0761761823e-04 rate = 5.7075100349e-05
Search direction 70 residual = 1.5204205418e-04 rate = 1.7095181861e-05
Search direction 80 residual = 4.4990380781e-05 rate = 5.0585921481e-06
Search direction 90 residual = 1.3178913005e-05 rate = 1.4817999912e-06
Search direction 100 residual = 3.9102585218e-06 rate = 4.3965849393e-07
Search direction 110 residual = 1.1995190015e-06 rate = 1.3487055004e-07
Search direction 120 residual = 3.7157092235e-07 rate = 4.1778391684e-08
Search direction 130 residual = 1.3055244409e-07 rate = 1.4678950414e-08

9 Final Search direction 134 residual = 8.5302882352e-08 rate = 9.5912166911e-09 actual residual = 8.5302882394e-08 actual rate = 9.5912166911e-09
GMRES init wall clock time = 3.2581950000e-02
GMRES core wall clock time = 3.8629861690e+00
Preconditioner update wall clock time = 2.5410916340e+00
Preconditioner application wall clock time = 1.0419944091e+01
Matrix vector product wall clock time = 2.8636879170e+00
Wall clock time for linear solve = 2.0008637394e+01

• Reported preconditioner application growth is used in dynamic reordering (see linear solver

parameters)

Output forces

26

• There are two versions of the forces computed for SFE simulations

• The {project}_hist.dat file will contain the FV integrated forces using the SFE state

• The {project}_sfe_hist.dat file and screen output will contain the SFE integrated

forces

• These values will be close for reasonably resolved meshes, but the SFE integrated forces

should be considered more accurate

Cases that struggle to start

27

• SFE will stall when a step is rejected while cfl = cfl_min

• What to try if SFE stalls at the beginning of a simulation:

• For subsonic cases, if SFE is reporting a max Mach number near 1 or small minimum
density, turn on smoothing = .true.

• Add ramped dissipation, see slides on smoothers

• If the previous steps don’t work, try turning off residual smoothing

Cases that struggle to converge

28

• For subsonic cases, if SFE is reporting a max Mach number near 1, turn on

smoothing = .true.

• Check linear solver convergence. If consistently failing to converge the linear system, then

adjust linear solver parameters (see linear solver parameter slides)

• Use a more dissipative smoother setting, smoother_clip(i) = 1.0 for

smoother_type(i) = metric_pressure

Recommendations for problem decomposition

29

• Forward problems:

• 10,000 - 30,000 mesh points per processor

• Memory required by solver: rough rule of thumb 2 GB per million points (not cells!)

• MPI only or MPI + 2 OpenMP threads (with linear_solver = slat_fgmres,

preconditioner = lsiluk) are recommended for robust performance

• Adjoint problems:

• 10,000 - 30,000 mesh points per processor

• Memory required by solver: rough rule of thumb 3 GB per million points (not cells!)

• 1 MPI process per socket with OpenMP threads (with linear_solver =

slat_fgmres, preconditioner = lsiluk) is recommended for robustness

Tutorial case: Steady BSCW 1 of 4

30

• The Benchmark Supercritical Wing (BSCW) is one of the Aeroelastic Prediction Workshop

(AePW) cases.

• The tutorial cases here will step through Case 2 of the 2nd AePW: flutter prediction at

Mach=0.74, AoA=0.0

• Steady SFE analysis -> static aeroelastic SFE analysis -> LFD

• Plunge and linearized pitch structural degrees of freedom

• Start by setting the flow conditions and solver selection in the fun3d.nml file:
&governing_equations

eqn_type = "compressible"

viscous_terms = "turbulent"

prandtlnumber_molecular = 0.755

flow_solver = "sfe"

/

&reference_physical_properties

temperature_units = "Kelvin"

mach_number = 0.74

reynolds_number = 278125.0

temperature = 304.911111

angle_of_attack = 0.0

/

Tutorial case: Steady BSCW 2 of 4

31

• Add the mesh information, steady solver parameters, sampling options to fun3d.nml:
&project

project_rootname = "bscw_coarse_mixed_nc"

/

&raw_grid

grid_format = "aflr3”

patch_lumping = "family"

/

&nonlinear_solver_parameters

time_accuracy = "steady"

/

&code_run_control

steps = 200

stopping_tolerance = 1.0E-15

restart_read = "off"

/

&global

boundary_animation_freq = -1

/

&boundary_output_variables

number_of_boundaries = 2

boundary_list = '1,3'

mach = .true.

cp = .true.

turb1 = .true.

temperature = .true.

/

Tutorial case: Steady BSCW 3 of 4

32

• Create the sfe.cfg file:

• Turn on the default shock smoother because local flow will go supersonic

• Add the uniform ramped smoother to help start the nonlinear solver
smoothing = .true.

number_of_smoothers = 2

smoother_type(1) = ramped

• Run the fun3d executable:

• mpirun nodet_mpi --gamma 1.136

Tutorial case: Steady BSCW 4 of 4

33

Convergence:

Forces:

• SFE integrated: CL = 1.8904727890e-01 CD = 1.4203887901e-02

• FV integrated: CL = 1.8902858800e-01 CD = 1.4081163161e-02

Adjoint Overview 1 of 2

34

• SFE’s adjoint path is not run through dual_mpi rather, 1 iteration of nodet_mpi with

fun3d.nml
&code_run_control

steps = 1

stopping_tolerance = 1.0E-15

restart_read = "on"

/

sfe.cfg options

• adjoint = .true. to enable the adjoint mode

• cost_function = 8

• output function of interest for the adjoint

• '1,2,3' Cx,Cy,Cz force coefficients

• '4,5,6' CMx,CMy,CMz, moments coefficients

• '7,8' CL, CD

• use_far_field_forces = .false.

• Toggles use of far-field boundaries to calculate forces

Adjoint Overview 2 of 2

35

• SFE’s adjoint path is not run through dual_mpi rather, 1 iteration of nodet_mpi

• SFE’s adjoint solution cannot be visualized through the fun3d.nml sampling namelist

• SFE writes state (primal) and costate (dual) solutions to prim_dual.solb

• To visualize the adjoint solution

• ref visualize {mesh file} prim_dual.solb prim_dual.tec

• Produces Tecplot output with state (primal) and costate (dual) fields

• Inviscid and laminar cases: state = [V1-V5], costate = [V6-V10]

• Turbulent cases: state = [V1-V6], costate = [V7-V12]

• Recommendations

• MPI+OpenMP with 1 MPI rank per socket

• linear_solver = slat_fgmres

• preconditioner = lsiluk

• relative_linear_residual_tolerance = 1e-14

• absolute_linear_residual_tolerance = 1e-15

• If convergence is not satisfactory, reduce prune_width by 50%

Tutorial case: Steady ONERA M6 Adaptation 1 of 7

36

• The ONERA M6 wing validation case from the Turbulence Modeling Resource

• https://turbmodels.larc.nasa.gov/ONERAwingnumerics_val.html

• Mach = 0.84, Re = 14.6x106, AoA = 3.06

• Workflow automated by Pyrefine:

• Steady SFE analysis -> Adjoint SFE analysis -> Goal-oriented metric -> mesh adaptation

• https://github.com/nasa/pyrefine/tree/main/examples/ONERA_m6/steady_sa_sfe_goal

• Files:

• adapt.py

• fun3d.nml_forward

• sfe.cfg_forward

• fun3d.nml_adjoint

• sfe.cfg_adjoint

• See Adaptation Tutorial for more details

https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
https://github.com/nasa/pyrefine/tree/main/examples/ONERA_m6/steady_sa_sfe_goal

Tutorial case: Steady ONERA M6 Adaptation 2 of 7

37

• adapt.py

from pyrefine import AdaptationDriver

from pyrefine.refine import RefineGoalOriented

from pyrefine.simulation import SimulationFun3dSFEAdjoint

from pbs4py import PBS

project = "om6ste"

pbs = PBS.k4(time=4)

pbs.mpiexec = 'mpiexec_mpt’

adapt_driver = AdaptationDriver(project, pbs)

adapt_driver.refine = RefineGoalOriented(project)

adapt_driver.refine.mask_strong_bc = True

adapt_driver.simulation = SimulationFun3dSFEAdjoint(project, fwd_omp_threads=2, adj_omp_threads=20)

adapt_driver.controller.save_all = True

adapt_driver.set_iterations(1, 20)

adapt_driver.run()

Tutorial case: Steady ONERA M6 Adaptation 3 of 7

38

• Case files

fun3d.nml_forward fun3d.nml_adjoint
32 &code_run_control 32 &code_run_control
33 steps = 400 33 steps = 1
34 stopping_tolerance = 1.0e-11 34 stopping_tolerance = 1.0e-12
35 restart_read = 'off' 35 restart_read = 'on'
36 use_openmp = .true. 36 use_openmp = .true.
37 grid_coloring = .true. 37 grid_coloring = .true.
38 / 38 /

Tutorial case: Steady ONERA M6 Adaptation 4 of 7

39

• Case files

sfe.cfg_forward sfe.cfg_adjoint
1 smoothing = .true. 1 smoothing = .true.
2 weakBC = 0 2 weakBC = 0
3 3
4 linear_solver = slat_fgmres | 4 linear_solver = slat_fgmres
5 preconditioner = lsiluk | 5 preconditioner = lsiluk

-------------------------------------- 6 relative_linear_residual_tolerance = 1e-14
-------------------------------------- 7 absolute_linear_residual_tolerance = 1e-15
-------------------------------------- 8
-------------------------------------- 9 adjoint = .true.
-------------------------------------- 10 cost_function = 8 ! CD

Tutorial case: Steady ONERA M6 Adaptation 5 of 7

40

• Pyrefine output

Begin adaptation step 11
Complexity: 30000.0
Running the flow forward solver
2929257.pbssrv2
Running the flow adjoint solver
2929275.pbssrv2
Complexity: 30000.0
Running goal-oriented refine
2929277.pbssrv2
Begin adaptation step 12

Tutorial case: Steady ONERA M6 Adaptation 6 of 7

41

• SFE Adjoint output

linear matvecs = 1e+02 final res = 1.90769e-15 rate = 1.00708e-13
Adjoint derivative, Mach = 1.3875931560e-01
Adjoint derivative, Reynolds = -2.0016400716e-11
Adjoint derivative, AOA = 7.0046118701e-03
Adjoint derivative, Yaw = -1.2069942780e-03
Writing prim_dual.solb ... complete.
Writing prim_dual_rhs.solb ... complete.
Writing sfe_restart.cfg ... complete.

Writing boundary output: om6ste11_tec_boundary.szplt
Time step: 43, ntt: 1, Prior iterations: 42

Writing INRIA solb volume file='om6ste11_volume.solb'
No restart files written!
Done.

Tutorial case: Steady ONERA M6 Adaptation 7 of 7

42

• Post processing with pyrefine

https://nasa.github.io/pyrefine/post_processing.html

Mesh 05

Mesh 25

https://nasa.github.io/pyrefine/post_processing.html

Tutorial case: Steady ONERA M6 Adaptation 7 of 7

43

• Post processing with pyrefine

https://nasa.github.io/pyrefine/post_processing.html

Mesh 5

Mesh 50

Mesh 25

https://nasa.github.io/pyrefine/post_processing.html

Tutorial case: Steady ONERA M6 Adaptation 7 of 7

44

• Post processing with pyrefine

https://nasa.github.io/pyrefine/post_processing.html

Mesh 5

Mesh 50

Mesh 25

https://nasa.github.io/pyrefine/post_processing.html

Summary

45

• Why add a SFE Solver?

• Training scope

• Compilation

• Shared components for SFE and FV in FUN3D

• Steady analysis with SFE

• Supported modes

• Nonlinear iteration

• Input files

• Output files

• Trouble shooting

• Tutorial cases

• BSCW

• ONERA M6 with goal-oriented adaptation

Public Community Questions: fun3d-users@lists.nasa.gov

Private/Proprietary Questions: fun3d-support@lists.nasa.gov

mailto:fun3d-users@lists.nasa.gov
mailto:fun3d-support@lists.nasa.gov

Request

46

• Share your successes with us! They help us advocate for resources to better support you.

• If there are capabilities you’d like to see in SFE, email us.

Public Community Questions: fun3d-users@lists.nasa.gov

Private/Proprietary Questions: fun3d-support@lists.nasa.gov

mailto:fun3d-users@lists.nasa.gov
mailto:fun3d-support@lists.nasa.gov

References

47Public Community Questions: fun3d-users@lists.nasa.gov

Private/Proprietary Questions: fun3d-support@lists.nasa.gov

• SFE: “Stabilized Finite Elements in FUN3D” W.K. Anderson, J.C. Newman, S.L. Karman,

Journal of Aircraft, 2018.

• SLAT linear solver: “Sparse Linear Algebra Toolkit for Computational Aerodynamics” S.L.

Wood, K.E. Jacobson, W.T. Jones, W.K. Anderson, AIAA SciTech Forum, 2020.

• K-ordering and Q-ordering: “Node Numbering for Stabilizing Preconditioners Based on

Incomplete LU Decomposition” W.K. Anderson, S.L. Wood, K.E. Jacobson, AIAA Aviation

Forum 2020.

• Goal-based mesh adaptation: “Anisotropic Goal-Based Mesh Adaptation Metric Clarification

and Development.” D. S. Kamenetsky, J. A. Krakos, T. R. Michal, F. Clerici, F. Aluzet, A.

Loseille, M. Park, S. L. Wood, A. Balan, M. C. Galbraith

mailto:fun3d-users@lists.nasa.gov
mailto:fun3d-support@lists.nasa.gov
https://arc.aiaa.org/doi/full/10.2514/1.C034482
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0317
https://arc.aiaa.org/doi/abs/10.2514/6.2020-3022
https://arc.aiaa.org/doi/abs/10.2514/6.2022-1245

Backup Slides

sfe.cfg :: smoothers 2 of 4

49

smoother_type(i) = metric_pressure - the default smoother which applies smoothing

at shocks and expansions

• smoother_clip(i) = 2.0 – Typically use between 1.0 – 4.0, but we have used as

low as 0.5

• smoother_coef(i) = 1.0 – Typically leave at 1.0

1.0 2.0 4.0

Mesh

No Clip

Clip=4.0

Clip=2.0

Clip=1.0

Clip=0.5

Clip=0.25

